Real Gelfand–mazur Algebras

نویسندگان

  • Olga Panova
  • A. F. dos Santos
  • OLGA PANOVA
چکیده

Several classes of real Gelfand–Mazur algebras are described. Conditions, when the trace M∩B of a closed maximal left (right) idealM of a real topological algebra A would be a maximal ideal in a subalgebra B of the center of A are given.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constructive Gelfand Duality for C*-algebras

We present a constructive proof of Gelfand duality for C*-algebras by reducing the problem to Gelfand duality for real C*-algebras.

متن کامل

An Application of the Gelfand-Mazur Theorem: the Fundamental Theorem of Algebra Revisited Una Aplicación del Teorema de Gelfand-Mazur: el Teorema Fundamental del Algebra Revisitado

The main goal of this note is to give a new elementary proof of the Fundamental Theorem of Algebra. This proof is based on the use of the well known Gelfand-Mazur Theorem.

متن کامل

SYMMETRIC m-CONVEX ALGEBRAS WITHOUT ALGEBRAIC ZERO DIVISORS AND RESULTS OF GELFAND-MAZUR TYPE

We show that in a symmetric m-convex algebra without algebraic zero divisors, any self-adjoint and invertible element is either positive or negative. As a consequence we obtain that a symmetric m-convex algebra containing no algebraic zero divisors and for which every positive element has a positive square root is isomorphic to C + Rad(A).

متن کامل

m-CONVEX ALGEBRAS WITHOUT ALGEBRAIC ZERO DIVISORS AND RESULTS OF GELFAND-MAZUR TYPE

We show that in a symmetric m-convex algebra without algebraic zero divisors, any self-adjoint and invertible element is either positive or negative. As a consequence we obtain that a symmetric m-convex algebra containing no algebraic zero divisors and for which every positive element has a positive square root is isomorphic to C + Rad(A).

متن کامل

On quaternionic functional analysis

In this article, we will show that the category of quaternion vector spaces, the category of (both one-sided and two sided) quaternion Hilbert spaces and the category of quaternion B∗-algebras are equivalent to the category of real vector spaces, the category of real Hilbert spaces and the category of real C∗-algebras respectively. We will also give a Riesz representation theorem for quaternion...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006